Three New Limonoids from the Leaves of Cipadessa cinerascens

by Zhi-Guo Zhang*a), Kai Yao^b), Gui-Lin Hu^a), and Ji Zhang^a)

^a) School of Light Industry, Zhejiang University of Science and Technology, Hangzhou 310023,
P. R.China (phone: +86-571-85070788; fax: +86-571-85070785; e-mail: zhangzhiguo@zust.edu.cn)
^b) Jiangsu Yuxiang Pharmaceutical Technology Co., Ltd., Yancheng 224500, P. R. China

Three new limonoids, cipadesins G-I(1-3), together with four known ones, were isolated from the leaves of *Cipadessa cinerascens*. Their structures were elucidated on the basis of 1D- and 2D-NMR data.

Introduction. – *Cipadessa cinerascens* (PELL.) HAND. – MAZZ. (Meliaceae) is a shrub mainly distributed in the Chinese southwest provinces such as Sichuan, Yunnan, Guizhou, and Guangxi [1]. Its leaves, barks, and roots have been used in Chinese folk medicine for the treatment of stomachache, dysentery, rheumatism, malaria, scald, and skin itch [2]. Previously, flavonoids and their glucosides were isolated from its leaves [3-5], and several structural novel limonoids were also reported [6-13]. This article reports the isolation and structural elucidation of the three new tetranortriterpenoids cipadesins $G-I^1$) (1-3), together with cipadesin B (4) [6], cipadesin D (5) [7], cineracipadesin E (6) [8], and cipadesin C (7) [6] from the leaves of *C. cinerascens*.

Results and Discussion. - Cipadesin G (1) was isolated as white powder. Its molecular formula was deduced as $C_{29}H_{38}O_9$ from the HR-ESI-MS (m/z 553.2432 $([M + Na]^+)$). The IR spectrum showed absorption bands for ketone C=O (1743 cm⁻¹) and ester C=O (1735 cm⁻¹) moieties. The ¹H-NMR data (*Table 1*) of **1** exhibited six Me s at $\delta(H)$ 1.04 (s, Me(18)), 0.91 (s, Me(19)), 1.05 (s, Me(28)), 0.86 (s, Me(29)), 2.06 (s, AcO-C(3)), and 3.71 (s, MeO) and a Me d at $\delta(H)$ 1.29 (d, J = 7.0 Hz, Me(30)), five of which were skeletal Me groups, besides three olefinic H-atoms at $\delta(H)$ 8.16 (s, H-C(21)), 6.66 (s, H-C(22)), and 7.47 (s, H-C(23)), suggesting the presence of a furan ring. The ¹³C-NMR and DEPT spectra (Table 2) supported the existence of a furan ring by $\delta(C)$ 121.1 (s, C(20)), 142.2 (d, C(21)), 110.5 (d, C(22)), and 143.5 (d, C(23)), and also revealed a C=O group at δ (C) 212.9 (s, C(9)). All of these were characteristic of a cipadesin-type limonoid, in which rings A and C were connected via C(10) and C(11) [6]. HMBCs of H–C(5) with C(10) and C(11), and Me(19) with C(11) supported the connection. Further detailed 2D-NMR analysis confirmed the cipadesintype limonoid skeleton as shown in Fig. 1. An AcO group was located at C(3) by a HMBC cross-peak H-C(3)/C=O of the AcO group, and a ROESY correlation H-C(3)/Me(19) indicated β -configuration of the AcO group. Therefore, the structure of 1 was established.

¹⁾ Arbitrary atom numbering; for systematic names, see *Exper. Part.*

^{© 2010} Verlag Helvetica Chimica Acta AG, Zürich

Fig. 1. Important HMBCs $(H \rightarrow C)$ and ROESY $(H \leftrightarrow H)$ correlations of compound 1

Cipadesin H (2) had a molecular formula $C_{31}H_{38}O_{11}$ as determined by the HR-ESI-MS (*m*/*z* 609.2284 ([*M*+Na]⁺)). The IR peaks at 1746 and 1737 cm⁻¹ suggested the presence of ketone C=O and ester C=O groups, respectively. The 1D-NMR spectra (*Tables 1* and 2) showed four skeletal Me groups at δ (H) 0.87 (*s*, Me(18)), 1.09 (*s*, Me(19)), 1.05 (*s*, Me(28)), and 0.81 (*s*, Me(29)) and δ (C) 17.6 (*q*, Me(18)), 19.3 (*q*, Me(19)), 22.8 (*q*, Me(28)), and 27.5 (*q*, Me(19)), and an exocyclic C=C group at δ (H) 5.40 (*s*, H_a-C(30)) and 5.18 (*s*, H_b-C(30)) and δ (C) 114.2 (*t*, C(30)) and 143.5 (*s*, C(8)), together with a furan ring at δ (H) 7.55 (*s*, H–C(21)), 6.45 (*t*, *J*=1.0 Hz, H–C(22)), and 7.46 (*t*, *J*=1.0 Hz, H–C(23)) and δ (C) 121.8 (*s*, C(20)), 139.7 (*d*, C(21)), 108.5 (*d*, C(22)), and 144.2 (*d*, C(23)). Besides, a C=O group at δ (C) 209.2 (*s*, C(9)) was observed in the ¹³C-NMR spectra. The above signals suggested that

	1	2	3
$H_a - C(1)$	3.40 (t, J = 3.0)	4.18 (d, J = 2.8)	4.33 (d, J = 3.4)
$CH_2(2)$ or $H_a - C(2)$	2.03–2.07 (<i>m</i> , 2 H)	5.21 $(t, J = 2.8)$	5.32(t, J = 3.4)
$H_a - C(3)$	4.71(t, J = 2.5)	5.11 (d, J = 2.8)	5.11 (d, J = 3.4)
$H_a - C(5)$	2.79 (d, J = 10.0)	2.94(t, J = 4.5)	3.08 (d, J = 6.0)
$H_a - C(6)$	2.05 - 2.07 (m)	2.25 (dd, J = 18.5, 4.5)	2.25 - 2.27 (m)
$H_{\beta} - C(6)$	$2.44 \ (dd, J = 17.5, 10.0)$	2.89 (dd, J = 18.5, 4.5)	2.79 (d, J = 17.0)
$H_a - C(8)$	2.62 (d, J = 7.0)	_	-
$H_a - C(11)$	2.39(s)	3.53 (dd, 11.0, 4.5)	3.36 (d, J = 2.5)
$H_a - C(12)$	1.25 - 1.30 (m)	1.70 - 1.76 (m)	-
$H_{\beta}-C(12)$	2.61 - 2.38 (m)	2.80 - 2.83 (m)	5.63 (d, J = 2.5)
$H_a - C(15)$	2.73 (d, J = 17.5)	2.79 (d, J = 18.0)	6.00(s)
$H_{\beta}-C(15)$	2.56 (d, J = 17.5)	2.83 (d, J = 18.0)	-
$H_{\beta}-C(17)$	6.52(s)	6.40 (s)	6.53(s)
Me(18)	1.04(s)	0.87(s)	1.09(s)
Me(19)	0.91(s)	1.09(s)	1.14(s)
H-C(21)	8.16 (s)	7.55(s)	7.56(s)
H - C(22)	6.66(s)	6.45 $(t, J = 1.0)$	6.41 (s)
H - C(23)	7.47(s)	7.46 $(t, J = 1.0)$	7.43(s)
Me(28)	1.05(s)	1.05 (s)	1.07(s)
Me(29)	0.86(s)	0.81(s)	0.85(s)
$Me(30)$ or $CH_2(30)$	1.29 (d, J = 7.0)	5.40(s), 5.18(s)	5.35(s), 5.11(s)
MeO	3.71 (s)	3.67 (s)	3.64(s)
AcO-C(2)	_	2.11(s)	2.12(s)
AcO-C(3)	2.06(s)	2.08(s)	2.09(s)
AcO-C(12)	-	_	1.86(s)
AcO-C(15)	_	-	2.22 (s)

Table 1. ¹*H*-*NMR Data* (500 MHz, CDCl₃) of Compounds **1**–**3**. δ in ppm, *J* in Hz.

compound **2** was a trijugin-type limonoid characterized by a five-membered ring *C* with an exocyclic C=O group at C(9) [14]. By comprehensive 2D-NMR analysis, the trijugin-type limonoid framework was finally determined for compound **2** as shown in *Fig. 2*. Two AcO groups were placed at C(2) and C(3) by the HMBC cross-peaks H-C(2)/C=O of AcO-C(2), and H-C(3)/C=O of AcO-C(3). The ROESY correlations H-C(2)/H-C(1) and Me(19) and H-C(2)/Me(28) as well as H-C(3)/Me(28) indicated the relative β -configuration of these two AcO groups. Accordingly, the structure of compound **2** was identified.

The molecular formula of cipadesin I (3) was determined as $C_{35}H_{42}O_{15}$ from the HR-ESI-MS (m/z 725.2442 ([M + Na]⁺)). Its IR spectrum showed absorption bands similar to those of **2**. The ¹H- and ¹³C-NMR data (*Tables 1* and 2) of **3** resemble those of **2**, except for the absence of two CH₂ groups and the presence of two additional CH–O groups at $\delta(H)$ 5.63 (d, J = 2.5 Hz, H–C(12)) and 6.00 (s, H–C(15)) and $\delta(C)$ 76.3 (d, C(12)) and 69.7 (d, C(15)), and two more AcO groups at $\delta(H)$ 1.86 (s, AcO–C(12)) and 2.22 (s, AcO–C(15)), and $\delta(C)$ 168.8 and 20.4 (s and q, AcO–C(12)), and 169.7 and 20.3 (s and q, AcO–C(15)). HMBC Cross-peaks H–C(12)/C=O of AcO–C(12), and H–C(15)/C=O of AcO–C(15) definitely positioned these two supplementary AcO groups at C(12) and C(15). The ROESY correlations H–C(12)/H–C(5) and H–C(17) and H–C(15)/H–C(1) assigned the

	1	2	3		1	2	3
C(1)	75.5(d)	73.7 (d)	75.7 (d)	C(19)	18.9(q)	19.3(q)	20.0(q)
C(2)	27.5(t)	65.4(d)	65.8(d)	C(20)	121.1(s)	121.8(s)	120.4(s)
C(3)	75.4(d)	74.4(d)	75.2 (d)	C(21)	142.2(d)	139.7 (d)	140.7(d)
C(4)	37.8 (s)	39.0 (s)	39.1 (s)	C(22)	110.5(d)	108.5(d)	108.8(d)
C(5)	37.0(d)	37.6 (d)	35.2(d)	C(23)	143.5(d)	144.2(d)	143.4 (<i>d</i>)
C(6)	30.7(t)	29.1(t)	28.7(t)	C(28)	21.2(q)	22.8(q)	22.7(q)
C(7)	174.2 (s)	174.2 (s)	173.7 (s)	C(29)	28.0(q)	27.5(q)	27.3(q)
C(8)	44.4(d)	143.5 (s)	139.6 (s)	C(30)	10.6(q)	114.2(t)	116.6(t)
C(9)	212.9(s)	209.2(s)	204.4(s)	MeO	52.2(q)	51.8(q)	51.9(q)
C(10)	44.0 (s)	55.9 (s)	56.6 (s)	AcO-C(2)		170.4(s),	170.9 (s),
C(11)	57.5 (d)	58.5(d)	69.4(d)			20.8(q)	21.2(q)
C(12)	29.0(t)	37.6 (t)	76.3 (d)	AcO-C(3)	170.9(s),	170.8(s),	170.8 (s),
C(13)	40.3 (s)	45.5 (s)	53.3 (s)		21.0(q)	20.4(q)	20.6(q)
C(14)	79.9 (s)	87.9 (s)	88.9 (s)	AcO-C(12)			168.8 (s),
C(15)	38.7(t)	33.5(t)	69.7(d)				20.4(q)
C(16)	169.0 (s)	168.7 (s)	166.4(s)	AcO-C(15)			169.7 (s),
C(17)	79.6 (d)	79.4(d)	79.3 (d)				20.3(q)
C(18)	21.1(q)	17.6(q)	12.2(q)				

Table 2. ¹³C-NMR Data (125 MHz, CDCl₃) of Compounds 1-3. δ in ppm.

Fig. 2. Important HMBCs $(H \! \rightarrow \! C)$ and ROESY $(H \! \leftrightarrow \! H)$ correlations of compound 2

relative β - and α -configuration to H–C(12) and H–C(15), respectively. The structure of compound **3** was thus established.

The structures of the known compounds were identified by comparison of their physical data with those reported in the literature.

Experimental Part

General. TLC: visualization under UV or by heating at 110° after spraying with 98% H₂SO₄/EtOH 5:95. Column chromatography (CC): silica gel (SiO₂; 200–300 mesh; *Qingdao Marine Chemical Co., Ltd.*, P. R. China), *Lichroprep RP-18* (40–63 μ m; *Merck*, Darmstadt, Germany), and *Kromasil RP-18* (5 μ m, 10 × 250 mm; *Eka Chemicals*, Bohus, Sweden). HPLC: *Shimadzu* instrument (*LC-10A* pump, *SPD-10A* UV/VIS detector). Optical rotations: *WWZ-2S* polarimeter (*Shanghai Cany Precision*)

Instrument Co., Shanghai, P. R. China). UV Spectra: Shimadzu-UV-240 spectrophotometer; $\lambda_{max} (\log \varepsilon)$ in nm. IR Spectra: Thermo-Nicolet-Nexus-670 FT-IR spectrometer; KBr pellets; $\tilde{\nu}$ in cm⁻¹. 1D- and 2D-NMR Spectra: Bruker-500-Avance-III spectrometer; at 500 (¹H) and 125 MHz (¹³C); δ in ppm rel. to Me₄Si and solvent signals as internal references, J in Hz. HR-ESI-MS: Bruker-Apex-III mass spectrometer; in m/z (rel. %).

Plant Material. The leaves of *C. cinerascens* were collected in Guangxi Province of P. R. China and were purchased from the *Chinese Herb Transaction Center*, Anhui Province, P. R. China. The material was identified by Dr. *Gang Ren* (Zhejiang University, Hangzhou, P. R. China). A voucher specimen (No. CC 080703) is deposited with the School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, P. R. China.

Extraction and Isolation. The air-dried powder of the plant material (7.0 kg) was extracted with 95% EtOH. The EtOH extract was concentrated *in vacuo* to yield a residue (704 g). The residue was dissolved in H₂O and extracted with CHCl₃. The CHCl₃ extract (261 g) was partitioned between 95% aq. MeOH and petroleum ether $(60-90^{\circ})$ to yield the MeOH-soluble fraction (53 g), which was then subjected to CC (SiO₂; CHCl₃/MeOH 1:0 \rightarrow 1:1): *Fractions* 1–5. *Fr.* 3 (17 g) was applied to CC (*RP-18* (40–63 µm); MeOH/H₂O 4:6 \rightarrow 10:0), and then applied to CC (SiO₂; CHCl₃/acetone 10:1 \rightarrow 8:2): **1** (35 mg), **3** (15 mg), and **4** (26 mg). *Fr.* 4 (16 g) was applied to CC (SiO₂; CHCl₃/acetone 10:1 \rightarrow 7:3), and then further purified by semi-prep. HPLC (MeOH/H₂O 65:35): **2** (3 mg), **5** (4 mg), **6** (4 mg), and **7** (4 mg).

Cipadesin G (=(1\$,4a\$,5a\$,7R,9\$,9a\$,10\$,11a\$,13R)-7-(Acetyloxy)-1-(furan-3-yl)dodecahydro-8,8,9a,11a,13-pentamethyl-3,12-dioxo-4a,10-ethano-4aH-pyrano[4,3-b][1]benzoxepin-9-acetic Acid Methyl Ester; 1): White amorphous solid. [α]₂₅²⁵ = -10.7 (c = 0.075, CHCl₃). IR: 3447, 2952, 1743, 1735, 1370, 1253, 1229, 1090, 1052. ¹H- and ¹³C-NMR: Tables 1 and 2. HR-ESI-MS: 553.2432 ([M+Na]⁺, $C_{29}H_{38}NaO_{5}$; calc. 553.2414).

Cipadesin H (=(-)-rel-(4R,4aR,6S,7aS,8R,10R,11S,11aS,12aR)-10,11-Bis(acetyloxy)-4-(furan-3-yl)dodecahydro-4a,7a,9,9-tetramethyl-13-methylene-2,7-dioxo-6,12a-methano-4H,12aH-pyrano[4,3-b][1]benzoxocin-8-acetic Acid Methyl Ester; **2**): White amorphous solid. [a] $_{25}^{25}$ = -19.5 (c = 0.35, CHCl₃). IR: 3439, 2962, 1746, 1737, 1378, 1248, 1160, 1083, 1048, 1025. ¹H- and ¹³C-NMR: Tables I and 2. HR-ESI-MS: 609.2284 ([M + Na]⁺, C₃₁H₃₈NaO₁₁; calc. 609.2311).

Cipadesin I (=(-)-rel-(*I*R,4R,4*a*R,5R,6R,7*a*S,8*R*,10*R*,11*S*,11*a*S,12*a*R)-1,5,10,11-*Tetrakis*(acety-loxy)-4-(*furan-3-yl*)dodecahydro-4a,7*a*,9,9-tetramethyl-13-methylene-2,7-dioxo-6,12a-methano-4H,12aH-pyrano[4,3-b][1]benzoxocin-8-acetic Acid Methyl Ester; **3**): White amorphous powder. $[a]_{25}^{25} = -42.2$ (c = 0.120, CHCl₃). IR: 3437, 2961, 1744, 1735, 1433, 1385, 1227, 1176, 1081, 1060, 1029. ¹H- and ¹³C-NMR: *Tables 1* and 2. HR-ESI-MS: 725.2442 ($[M + Na]^+$, C₃₅H₄₂NaO⁺₁₅; calc. 725.2421.

REFERENCES

- [1] Delectis Florae Reipublicae Popularis Sinicae Agendae Academiae Sinicae Edita, 'Flora Reipublicae Popularis Sinicae', Science Press, Beijing, 1997, Tomus 43 (3), p. 58.
- [2] Jiangsu New Medical College, 'A Dictionary of Chinese Herb', Shanghai People Press, 1977, p. 2183.
- [3] L. Liang, C. C. Zhong, Z. Y. Xiao, Zhongcaoyao 1990, 21, 2.
- [4] L. Liang, C. C. Zhong, Z. Y. Xiao, Zhongcaoyao 1991, 22, 6.
- [5] L. Liang, C. C. Zhong, Z. Y. Xiao, *Zhongcaoyao* 1994, 25, 236.
- [6] X.-H. Yuan, B.-G. Li, M. Zhou, H.-Y. Qi, G.-L. Zhang, Org. Lett. 2005, 7, 5051.
- [7] X.-H. Yuan, B.-G. Li, C.-X. Xu, M. Zhou, H.-Y. Qi, G.-L. Zhang, Chem. Pharm. Bull. 2007, 55, 902.
- [8] Y.-T. Di, H.-P. He, H.-Y. Liu, P. Yi, Z. Zhang, Y.-L. Ren, J.-S. Wang, Q.-Y. Sun, F.-M. Yang, X. Fang, S.-L. Li, H.-J. Zhu, X.-J. Hao, J. Nat. Prod. 2007, 70, 1352.
- [9] Y.-L. Ren, Q.-R. Tang, Y.-T. Di, H.-P. He, Z. Zhang, S.-L. Li, X.-J. Hao, *Helv. Chim. Acta* 2007, 38, 764.
- [10] X. Fang, Y.-T. Di, H. P. He, H.-Y. Liu, Z. Zhang, Y.-L. Ren, Z.-L. Gao, S. Gao, X.-J. Hao, Org. Lett. 2008, 10, 1905.

702

- [11] X. Fang, Y.-T. Di, C.-S. Li, Z.-L. Geng, Z. Zhang, Y. Zhang, Y. Lu, Q.-T. Zheng, S.-Y. Yang, X.-J. Hao, J. Nat. Prod. 2009, 72, 714.
- [12] X. Fang, Y.-T. Di, G.-W. Hu, L.-S. Lin, X.-J. Hao, Biochem. Syst. Ecol. 2009, 37, 528.
- [13] X. Fang, Q. Zhang, C.-J. Tan, S.-Z. Mu, Y. Lü, Y.-B. Lu, Q.-T. Zheng, Y.-T. Di, X.-J. Hao, *Tetrahedron* 2009, 65, 7408.
- [14] K. K. Purushothaman, M. Venkatanarasimhan, A. Sarada, J. D. Connolly, D. S. Rycroft, Can. J. Chem. 1987, 65, 35.

Received July 29, 2009